Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ze-Bao Zheng,* Ren-Tao Wu, Jing-Rong Lu and Yi-Feng Sun

Department of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China

Correspondence e-mail: zhengzebao@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.138$
Data-to-parameter ratio $=13.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
5-[3-(Quinolin-8-yloxy)propyl]-1,3,4-oxadiazole-2(3H)-thione

The title compound, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, crystallizes as a thione tautomer. There are two molecules in the asymmetric unit which differ in conformation. The molecules are connected via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a one-dimensional helical structure.

Comment

In the course of our studies on 1,3,4-oxadiazole-2-thione derivatives the title compound, (I), was synthesized and its crystal structure determined. 1,3,4-Oxadiazole-2-thiones are known to possess a broad spectrum of biological activities (Ram \& Vlietinck, 1988; Boschelli et al., 1993; Bahadur \& Pandy, 1980).

(I)

The asymmetric unit of (I) contains two molecules in the usual thione tautomeric form (Du et al., 2004; Thamotharan et al., 2005) (Table 1). The two molecules differ in conformation. In one molecule, the conformation along the O3-C24$\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 27-\mathrm{O} 4$ bond sequence is trans-trans-trans, whereas in the second molecule the conformation is (+)gauche-trans-(-)gauche along the corresponding O1$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 2$ bond sequence (Table 1). Despite these differences, the dihedral angles between the mean planes of the 1,3,4-oxadiazole and the quinoline rings are not very different $\left[11.3(2)\right.$ and $22.6(1)^{\circ}$ for the molecules containing atoms O 3 and O 1 , respectively]. The molecules are connected via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a one-dimensional helical structure (Table 2 and Fig. 2).

Received 24 July 2006
Accepted 30 August 2006

Experimental

To a solution of 4-(quinolin-8-yloxy)butanohydrazide (0.01 mol) in ethanol $(30 \mathrm{ml})$, potassium hydroxide $(0.0125 \mathrm{~mol})$ and carbon disulfide were added (0.014 mol). The solution was refluxed for 9 h and the solvent was evaporated under reduced pressure. The residue was dissolved in water and acidified with dilute HCl . The solid (I) which precipitated was filtered off and recrystallized from a mixture of dimethylformamide and ethanol (5:1) (m.p. 505-506 K). Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: C 58.52 , H 4.56 , $\mathrm{N} 14.62 \%$; found: C 58.50 , H 4.58, N 14.61%. Crystals of (I) suitable for single-crystal X-ray analysis were selected directly from the sample after recrystallization.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=287.33$
Triclinic, $P \overline{1}$
$a=7.3208$ (5) A
$b=11.5523$ (7) A
$c=16.7934$ (10) \AA
$\alpha=84.271$ (3) ${ }^{\circ}$
$\beta=89.326(4)^{\circ}$
$\gamma=75.357(2)^{\circ}$

Data collection

Bruker SMART diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.901, T_{\text {max }}=0.965$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.138$
$S=1.00$
4781 reflections
369 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& V=1367.13(15) \AA^{3} \\
& Z=4 \\
& D_{x}=1.396 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.24 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.44 \times 0.26 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

7016 measured reflections
4781 independent reflections
4241 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1 P)^{2}\right. \\
& \quad+0.33 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

S1-C14	$1.6467(19)$	$\mathrm{N} 3-\mathrm{N} 2$	$1.388(2)$
S2-C28	$1.6543(19)$	$\mathrm{N} 6-\mathrm{N} 5$	$1.392(2)$
O2-C13-C12-C11	$-71.7(2)$	$\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 27-\mathrm{O} 4$	$-168.98(17)$
C13-C12-C11-C10	$-171.58(16)$	C27-C26-C25-C24	$173.48(17)$
O1-C10-C11-C12	$72.6(2)$	$\mathrm{O} 3-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$-176.73(17)$

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H1 $\cdots \mathrm{N} 4$	$0.93(2)$	$1.84(2)$	$2.770(2)$	$174(2)$
N3-H1 3 O3	$0.93(2)$	$2.54(2)$	$3.036(2)$	$113.6(17)$
N6-H29 ${ }^{\mathrm{i}}$	$0.91(2)$	$1.89(2)$	$2.782(2)$	$165(2)$

Symmetry code: (i) $x-1, y, z$.

Figure 1
The asymmetric unit of (I) showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. The dashed lines indicate hydrogen bonds.

Figure 2
The helical structure formed by hydrogen bonds (dashed lines) in (I). H atoms have been omitted for clarity.

All H atoms were initially located in a difference Fourier map. The methylene H atoms were constrained to an ideal geometry, with $\mathrm{C}-$ $\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The positions of the amine H atoms were refined freely along with isotropic displacement parameters. All quinoline H atoms were placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This project was supported by the Postgraduate Foundation of Taishan University (No. Y05-2-02).

References

Bahadur, S. \& Pandy, K. K. (1980). J. Indian Chem. Soc. 57, 1138-1140.

organic papers

Boschelli, D. H., Connor, D. T., Bornemeier, D. A., Dyer, R. D., Kennedy, J. A., Kuipers, P. J., Okonkwo, G. C., Schrier, D. J. \& Wright, C. D. (1993). J. Med. Chem. 36, 1802-1810.
Du, M., Zhao, X.-J. \& Guo, J.-H. (2004). Acta Cryst. E60, o327-o328.
Ram, V. J. \& Vlietinck, A. J. (1988). J. Heterocycl. Chem. 25, 253-256.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Thamotharan, S., Parthasarathi, V., Anandha Babu, G., Hunnur, R. K., Badami, B. \& Linden, A. (2005). Acta Cryst. E61, o3746-o3747.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

